

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

DDA4220 Deep Learning and Applications

Lecture 7 Natural Language Processing Basic Ruimao Zhang zhangruimao@cuhk.edu.cn

School of Data Science The Chinese University of Hong Kong (Shenzhen)

Slides partially credited to Prof. Divi Yang and at Stanford

What is Natural Language Processing (NLP)

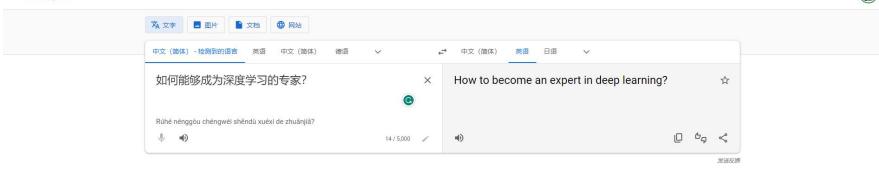
- Natural Language Processing (NLP) is a subfield of artificial intelligence and computational linguistics that focuses on the interaction between computers and human language.
- NLP enables computers to understand, interpret, and generate human language, including speech and text.

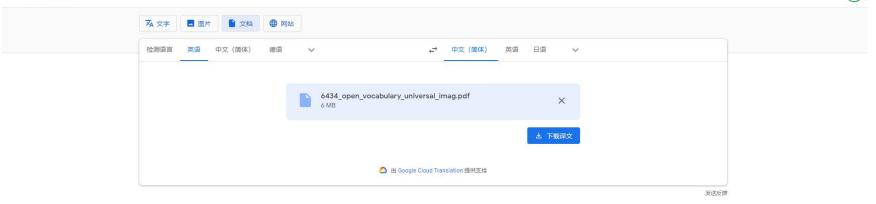
Conversational agents:

- Speech recognition
- Language analysis
- Dialogue processing
- Information retrieval
- Text to speech

NLP in our everyday life

• Machine Translation





:::

:::

站合得貌与現代 ・ 融會中國 5 西方 To Combine Tradition with Modernity To Brung To Sether China and the West

NLP in our everyday life

Question Answering

- What does "divergent" mean?
- What year was Abraham Lincoln born?
- How many states were in the United States that year?
- How much Chinese silk was exported to England in the end of the 18th century?
- What do scientists think about the ethics of human cloning?

NLP in our everyday life

Dialogue Systems

\leftarrow	→ C	
+	New chat	
P	SH Word meaning: diver ∠ ⓓ	Do you know the Chinese University of Hong Kong (Shenzhen)?
P	NLP: Computers understand	Yes, I am aware of the Chinese University of Hong Kong, Shenzhen $ hinspace hinspace abla$
P	Speech Request Assistance.	(CUHK-Shenzhen). It is a research-intensive university located in the city of Shenzhen, Guangdong Province, China. The university was established
P	Research Scientist's Achieve	in 2014 as a joint venture between the Chinese University of Hong Kong (CUHK) and the Shenzhen Municipal Government.
		CUHK-Shenzhen offers undergraduate and graduate programs in various fields, including science, engineering, business, humanities, and
۵	Clear conversations	social sciences. The university has a diverse student body, with students from China and other countries around the world. CUHK-Shenzhen is
Ċ,	Dark mode	committed to fostering academic excellence and promoting innovation
°	My account	and entrepreneurship.
ď	Updates & FAQ	
[→	Log out	₹

Natural Language Processing

Applications

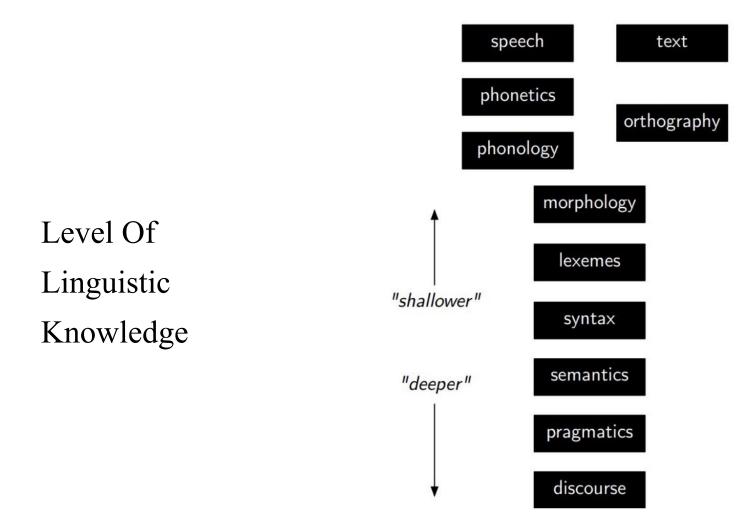
- Text Classification .
- Named Entity Recognition
- Sentiment Analysis
- Machine Translation
- Text Summarization
- Question Answering
- Speech Recognition
- Text Generation
-

Core Technologies

- Language modeling
- Part-of-speech tagging
- Syntactic parsing
- Named-entity recognition
- Word sense disambiguation
- Semantic role labeling
-

NLP lies at the intersection of computational linguistics and machine learning.

Natural Language Processing



6

Level of Linguistic Knowledge

• Phonetics, Phonology

sounds Thiasien

- Words
 - Language Modeling
 - Tokenization
 - Spelling correction

words This is a simple sentence

Level of Linguistic Knowledge

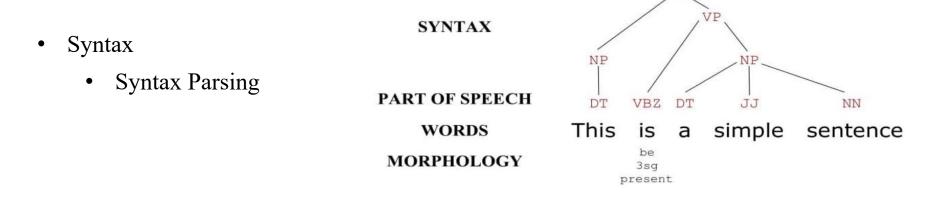
- Morphology
 - Morphology analysis

•	Tokenization	WORDS	This	is	а	simple	sentence
	Tokomzation	MODBHOLOCY		be			
•	Lemmatization	MORPHOLOGY		3sg	-		
			P	resen	L		

- Part of Speech (POS)
 - POS tagging

PART OF SPEECH	DT	VBZ	DT	JJ	NN
WORDS	This	is	а	simple	sentence
MORPHOLOGY	I	be 3sg presen	t		

Level of Linguistic Knowledge



•	Semantic
---	----------

- Named entity recognition
- Word sense disambiguation
- Semantic role labeling

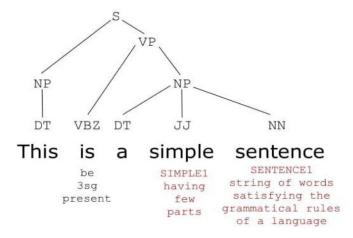
SYNTAX

PART OF SPEECH

WORDS

MORPHOLOGY

SEMANTICS



9

站合信统与现代 · 融會中國公西方 To Combine Tradition with Modernity To Bruk To Secther China and the West

Level of Linguistic Knowledge

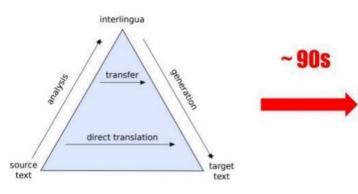
• Discourse

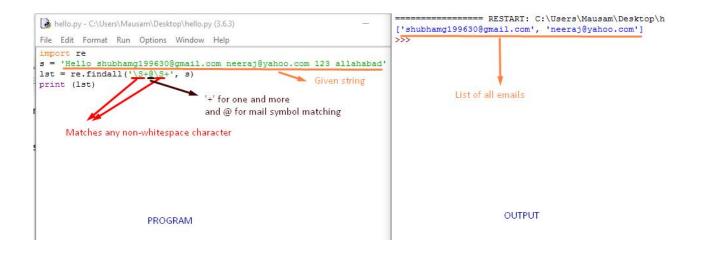
SYNTAX PART OF SPEECH	NP DT VBZ DT JJ NN	
WORDS	This is a simple sentence	
MORPHOLOGY	be SIMPLE1 SENTENCE1 3sg having string of words	
SEMANTICS	present few satisfying the parts grammatical rules of a language	
DISCOURSE	CONTRAST But it is an instructive one.	/

Symbolic NLP

- Symbolic NLP is based on formal rules and logic, where the focus is on the symbolic representation of language.
- Linguistic rules are used to create a formal grammar that can be applied to natural language text.
- Rules are hand-crafted by linguists and experts

Logic-based/Rule-based NLP

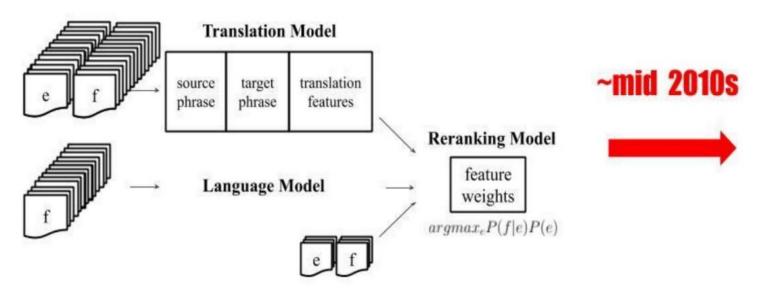




Probabilistic NLP

- Probabilistic NLP is based on statistical models and machine learning algorithms
- It learns from data to make predictions about language.
- In probabilistic NLP, the features are automatically learned from the data using statistical methods and machine learning algorithms but not the hand-crafted.

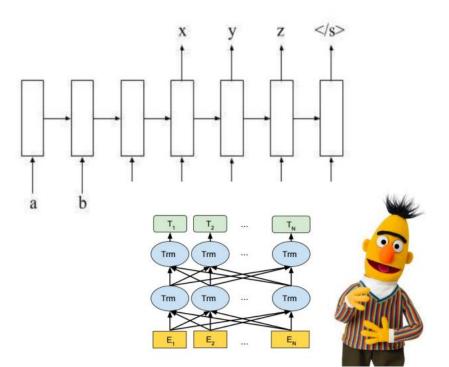
Engineered Features/Representations



Connectionist NLP

- Connectionist NLP is an approach to natural language processing that uses neural networks to model language and perform various NLP tasks.
- It has the advantage of being able to learn complex features and relationships in data without the need for hand-crafted features or domainspecific knowledge.

Learned Features/Representations



Representing words as discrete symbols

• In traditional NLP, we regard words as discrete symbols:

hotel, conference, motel – a localist representation

• Such symbols for words can be represented by **one-hot** vectors:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0]

- Vector dimension = number of words in vocabulary (e.g., 500,000+)
- These two vectors are **orthogonal**. There is no natural notion of **similarity** for one-hot vectors!
- Solution: learn to encode similarity in the vectors themselves

Representing words by their context

- **Distributional semantics:** A word's meaning is given by the words that frequently appear close-by.
 - One of the most successful ideas of modern statistical NLP!
- When a word *w* appears in a text, its **context** is the set of words that appear nearby (within a fixed-size window).
- We use the many contexts of *w* to build up a representation of *w*

...government debt problems turning into **banking** crises as happened in 2009... ...saying that Europe needs unified **banking** regulation to replace the hodgepodge... ...India has just given its **banking** system a shot in the arm...

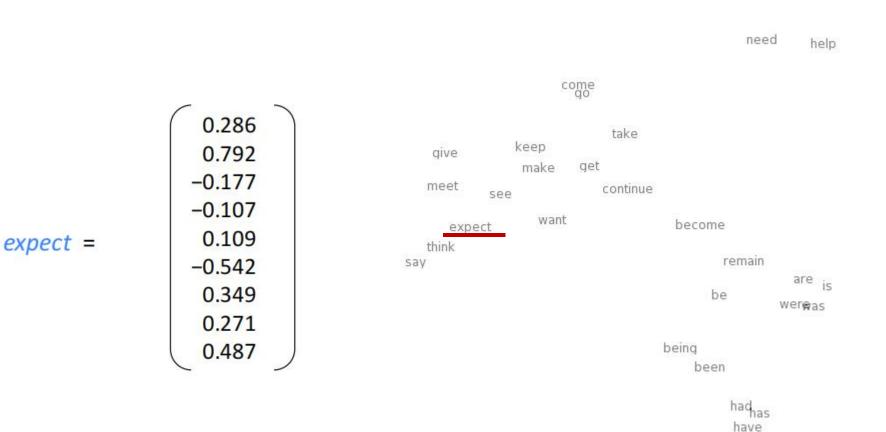
These context words will represent banking

Word vectors

• We will build a dense vector for each word, chosen so that it is similar to vectors of words that appear in similar contexts, measuring similarity as the vector dot (scalar) product

Note: word vectors are also called (word) embeddings or (neural) word representations. They are a distributed representation

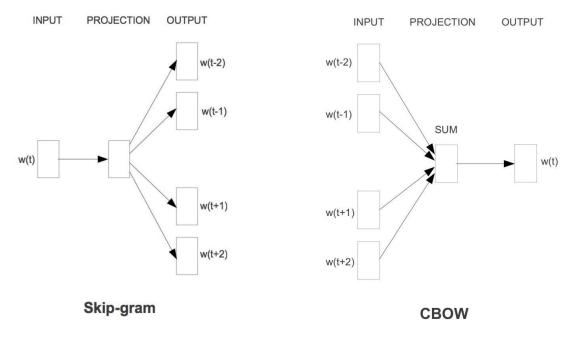
Word meaning as a neural word vector – visualization



17

Word2vec: Overview

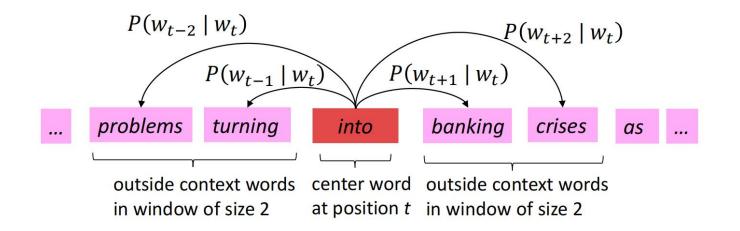
- Similar to language model, but predicting next word is not the goal.
- Idea: words that are semantically similar often occur in similar context
- Embeddings that are good at predicting neighboring words are also good at representing similarity



Skip-gram v.s. Continuous bag-of-words

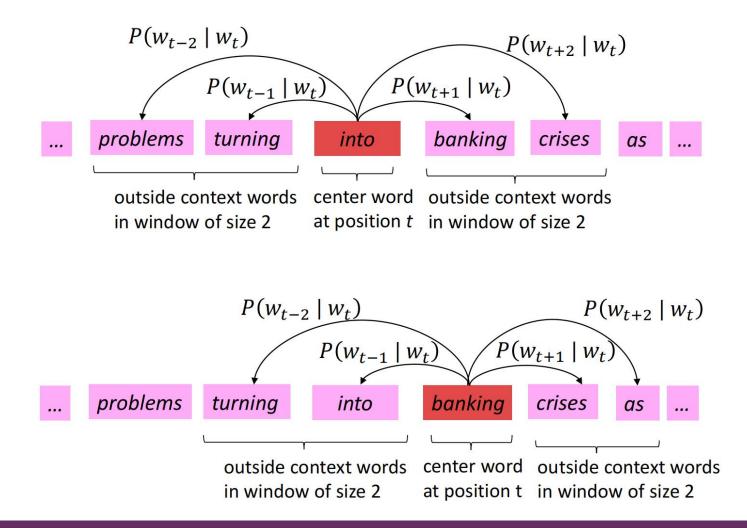
Word2vec: Overview

- Basic Solution
 - We have a large corpus ("body") of text: a long list of words
 - Every word in a fixed vocabulary is represented by a vector
 - Go through each position *t* in the text, which has a center word c and context ("outside") words *o*
 - Use the similarity of the word vectors for *c* and *o* to calculate the probability of *o* given *c* (or vice versa)
 - Keep adjusting the word vectors to maximize this probability



Word2Vec Overview

• Example windows and process for computing $P(w_{t+j} | w_t)$



Skip-gram: objective function

• For each position t = 1,...,T, predict context words within a window of fixed size m, given center word w_t . Data likelihood:

Likelihood =
$$L(\theta) = \prod_{t=1}^{T} \prod_{\substack{-m \le j \le m \\ j \ne 0}} P(w_{t+j} \mid w_t; \theta)$$

• The objective function $J(\theta)$ is the (average) negative log likelihood:

$$J(\theta) = -\frac{1}{T}\log L(\theta) = -\frac{1}{T}\sum_{t=1}^{T}\sum_{\substack{-m \le j \le m \\ j \ne 0}}\log P(w_{t+j} \mid w_t; \theta)$$

Skip-gram: objective function

• We want to minimize the objective function:

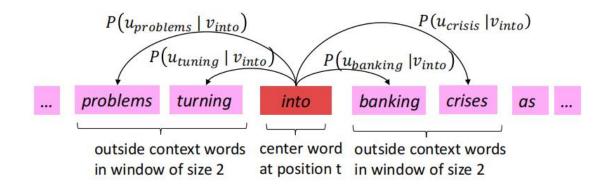
$$J(\theta) = -\frac{1}{T} \sum_{\substack{t=1 \ -m \le j \le m \\ j \ne 0}}^{T} \log P\left(w_{t+j} \mid w_t; \theta\right)$$

- We will use two vectors per word w to calculate $P(w_{t+j} | w_t; \theta)$
 - v_w when w is a center word
 - u_w when w is a context word
- Then for a center word *c* and a context word *o*:

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

Skip-gram with Vectors

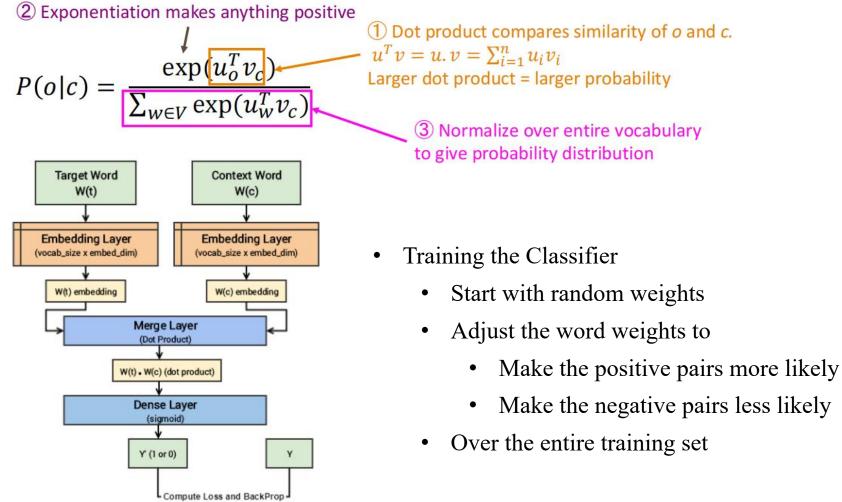
- Example windows and process for computing $P(w_{t+i} | w_t)$
- $P(u_{problems} | v_{into})$ short for $P(problems | into ; u_{problems}, v_{into}, \theta)$



- Treat the target word and a neighboring context word as positive examples
- Randomly sample other words in the lexicon to get negative samples
- Use logistic regression to train a classifier to distinguish those two cases
- Use the weights as the embeddings

Skip-gram with Vectors

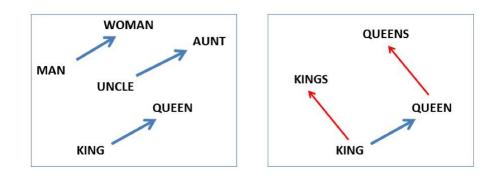
• Prediction Function: the softmax function to map values to a probability distribution



Intrinsic word vector evaluation

- Word Vector Analogies a:b::c:? man:woman::king:? $d = \arg \max_{i} \frac{(x_b - x_a + x_c)^T x_i}{||x_b - x_a + x_c||}$
- Evaluate word vectors by how well their cosine distance after addition captures intuitive semantic and syntactic analogy questions
- Discarding the input words from the search (!)

vector('king') - vector('man') + vector('woman') ≈ vector('queen')
vector('Paris') - vector('France') + vector('Italy') ≈ vector('Rome')



Summary of Skip-gram

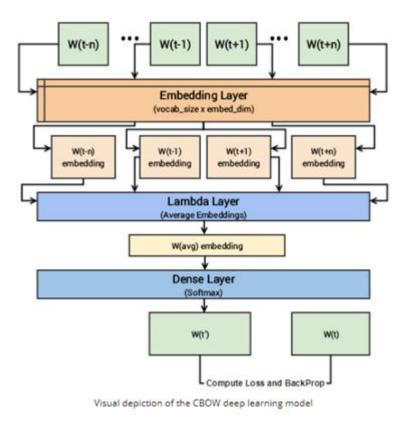
- Start with random word vectors as initial embeddings
- Try to predict surrounding words using word vectors:

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

- Take a corpus and take pairs of words that co-occur as positive examples
- Take pairs of words that don't co-occur as negative examples
- Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the classifier performance
- Throw away the classifier code and keep the embeddings
- Doing no more than this, this algorithm learns word vectors that capture well word similarity and meaningful directions in a word space!

Continuous Bag of Words (CBOW)

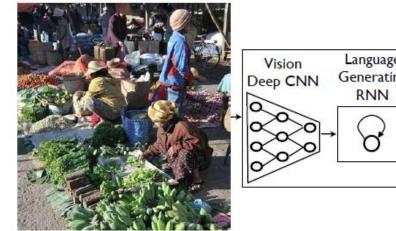
- The context words are first passed as an input to an embedding layer (initialized with some random weights)
- The word embeddings are then passed to a lambda layer where we average out the word embeddings.
- We then pass these embeddings to a dense SoftMax layer that predicts our target word.
- We match this with our target word and compute the loss and then we perform backpropagation with each epoch to update the embedding layer in the process.

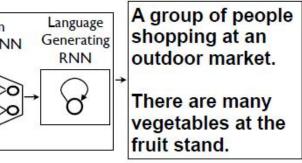


• Extracting out the embeddings of the needed words from our embedding layer, once the training is completed.

Generate image captions (Vinyals et al. arXiv 2014)

- Use a CNN as an image encoder and transform it to a fixed-length vector
- It is used as the initial hidden state of a "decoder" RNN that generates the target sequence





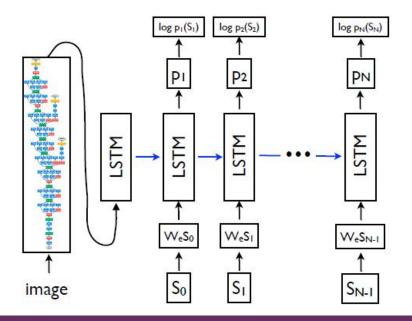
Generate image captions

• The learning process is to maximize the probability of the correct description given the image

$$\theta^* = \arg \max \sum_{(I,S)} \log P(S|I;\theta)$$

$$\log P(S|I) = \sum_{t=0}^{N} \log P(S_t|I, S_0, \dots, S_{t-1})$$

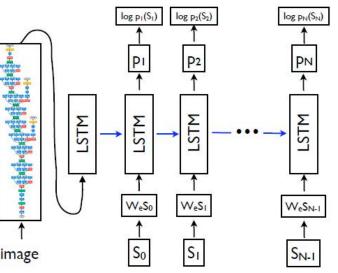
I is an image and S is its correct description



Generate image captions

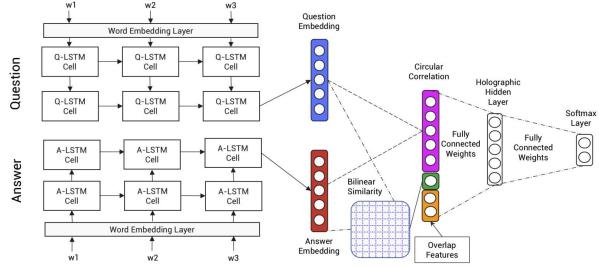
- Denote by S_0 a special start work and by S_N a special stop word
- Both the image and the words are mapped to the same space, the image by using CNN, the words by using word embedding W_e
- The image *I* is only input once to inform the LSTM about the image contents
- Sampling: sample the first word according to P_1 , then provide the corresponding embedding as input and sample P_2 , continuing like this until it samples the special end-of-sentence token

$$x_{-1} = \operatorname{CNN}(\mathbf{I})$$
$$x_t = W_e S_t, t \in \{0, \dots, N-1\}$$
$$P_{t+1} = \operatorname{LSTM}(x_t), t \in \{0, \dots, N-1\}$$
$$L(I, S) = -\sum_{t=1}^N \log P_t(S_t)$$

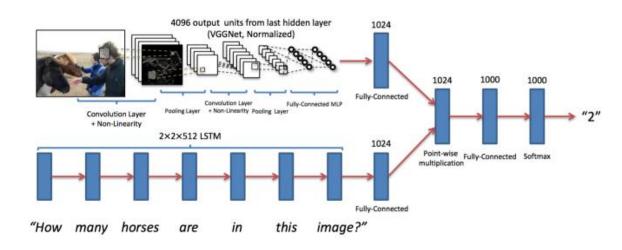


Question Answering and Visual Question Answering

• Question Answering

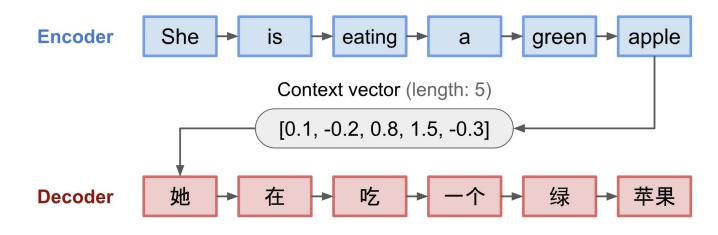


• Visual Question Answering

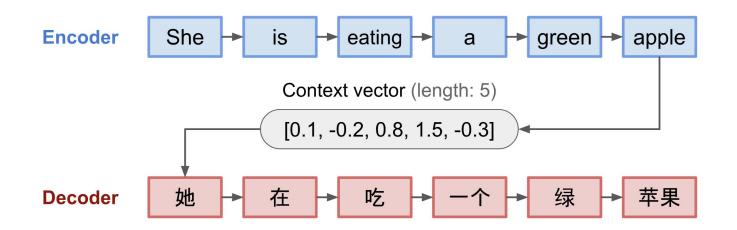


Revisit of seq2seq model

- The conventional seq2seq model is proposed for neural machine translation and generally follows an encoder-decoder architecture
- The encoder converts the input sequence into a sentence embedding (or context vector, or "thought" vector) of a fixed length (dimension)
- The embedding vector is expected to be a comprehensive summary of the whole input sequence
- The decoder takes only the sentence embedding from the encoder as input to emit the output sequence



- The major drawback of the seq2seq model: this fixed-length embedding vector is incapable of remembering the whole long sentences. Often it is more likely to forget the early parts of the input sequence.
- As the context vector might not be able to capture the information of the whole sentence, the attention mechanism [Bahdanau et al., 2015] explicitly builds word-level alignment between the input and output sequences



- $\mathbf{x} = [x_1, x_2, \dots, x_n]$ input (source) sequence of length n
- $\mathbf{y} = [y_1, y_2, \dots, y_m]$ output (target) sequence of length m
- The encoder is a **bidirectional RNN** having forward hidden states \vec{h}_i and backward hidden states \overleftarrow{h}_i , and generating the hidden state at position *i*

$$\begin{array}{c} \textbf{H}_{i} = [\textbf{H}_{i}, \textbf{H}_{i}] \\ \hline \textbf{Target} & \textbf{Y}_{t-1} & \textbf{Y}_{t} \\ \hline \textbf{V}_{t-1} & \textbf{V}_{t} \\ \hline \textbf{V}_{t-1} & \textbf{V}_{t-1} \\ \hline \textbf{V}_{t-1}$$

$$h_i = [\overrightarrow{h}_i^T; \overleftarrow{h}_i^T]^T$$

• The decoder has hidden state $s_t = f(s_{t-1}, y_{t-1}, c_t)$ for the output word at position

$$t \text{ for } t = 1, \dots, m$$

$$c_{t} = \sum_{i=1}^{n} \alpha_{t,i} h_{i}$$

$$\alpha_{t,i} = \text{align}(y_{t}, x_{i})$$

$$= \frac{\exp(\text{score}(s_{t-1}, h_{i}))}{\sum_{i'=1}^{n} \exp(\text{score}(s_{t-1}, h_{i'}))}$$
Softmax of some predefined alignment score
$$(\text{Target}) \begin{array}{c} Y_{t,1} \\ Y_{t-1} \\$$

- C_t the sum of hidden states of the input sequence weighted by the alignment scores, based on which, the class or regression prediction of each output position can be made
- The alignment model assigns a score $\alpha_{t,i}$ to the pair (y_t, x_i) at input position t and output position i
- score a 2-layer feed-forward network (or MLP) estimating the affinity between s_{t-1} (just before emitting y_t) and h_i

score $(s_t, h_i) = W_1(\tanh(W_2[s_t; h_i] + b_2) + b_1)$

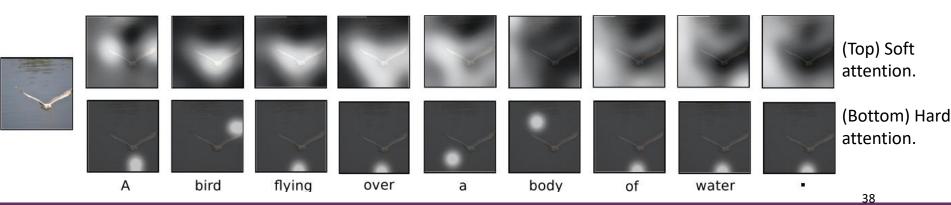
 W_1, W_2, b_1, b_2 are weight matrices and biases to be learned

Image Captioning

- By changing the encoder to a CNN model, we can output an image caption according to the contents of an input image
- The above mentioned attention mechanism can also be used to align different image regions with the output words as in the **Show**, attend and tell paper
- The alignment weights $\alpha_{t,i}$ for each output position *t* are normalized across the whole 2D spatial image plane. Each input index *i* indices a pixel (*x*, *y*) in the 2D feature maps from the visual CNN

Soft and Hard Attention

- The **Show, attend and tell** paper also discusses "soft" vs. "hard" attention, based on whether the attention weights are discrete or continuous over the image regions
- **Soft attention**: the alignment weights are learned and placed "softly" over all patches in the source image, the same as the NMT alignment paper
 - The model is smooth and differentiable
 - Expensive when the source input is large
- Hard attention: only selects one part of fixed scale of the image to attend to at a time
 - Less calculation at the inference time
 - The model is non-differentiable and requires more complicated techniques such as variance reduction or reinforcement learning to train



Different Alignment Score Functions

• Different alignment (or similarity measurement) functions

Туре	Alignment Score Function		
Cosine similarity	$\operatorname{score}(s_t, h_i) = \cos(s_t, h_i)$		
Concatenation-based*	$\operatorname{score}(s_t, h_i) = W_1 \tanh(W_2[s_t; h_i])$		
General	$\operatorname{score}(s_t, h_i) = s_t^T W h_i$		
Dot-product	$\operatorname{score}(s_t, h_i) = s_t^T h_i$		
Scaled dot-product [†]	$\operatorname{score}(s_t, h_i) = \frac{s_t^T h_i}{\sqrt{\dim}}$		
Diag up at any any mat also up	t dine is the dimension of the content of the line is and		

*Bias vectors are not shown. dim is the dimension of the vectors s_t and h_i .

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

Thanks for Listening!

Ruimao Zhang

Room 517, Daoyuan Building, The Chinese University of Hong Kong, Shenzhen zhangruimao@cuhk.edu.cn ruimao.zhang@ieee.org